ETE 204 / ETE 205 (LAB)

ETE 204 / ETE 205 (LAB)

Course Code: ETE 204 / ETE 205 (LAB)
Course Name:
Digital Electronics
Prerequisite:
Credit Hours:
3.00
Detailed Syllabus:

Introductory concepts: Binary, octal and hexadecimal number system. BCD, ASCII codes. Logic gates and Boolean algebra, Combinational circuit design using NAND or NOR gates only, trouble shooting case studies. Minimization of switching functions, algebraic and graphical simplification of Boolean expression, Quine Mcluskcy method.

NAND and NOR latches: Clocked SR, JK, D and T flip-flop applications. Frequency division and counting, troubleshooting case studies. Arithmetic circuits. The half-adder and full-adder. Parallel adders, 1C parallel adders. 2’s complement addition and subtraction. The BCD adder. Binary multiplier, troubleshooting case studies.

Counter: Asynchronous ripple up and down counters, counters with any MOD numbers, asynchronous 1C counters, propagation delay. Parallel up, down and up/down counters. Presentable counters. Decoding a counter. Cascading counters.
Register: Shift registers, 1C shift registers, shift-register counters. Frequency counter, digital clock, trouble shooting case studies.

MSI Logic circuits: BCD-to-decimal decoders, BCD-to-7-segment decoder/drivers. Encoders. Multiplexers and their applications. Demultiplexers. Troubleshooting case studies. Analog-to-digital conversion (ADC), digital-ramp ADC, successive approximation ADC, flash ADC. Digital-to-analog conversion (DAC): circuits, specifications, applications. Sample and hold circuits.

Integrated Circuit (1C) logic families: TTL logic family, standard TTL series characteristics, other TTL series, TTL loading rules, TTL open-collector outputs, tristate TTL. The ECL family. Digital MOSFET circuits, characteristics. CMOS arcuits, CMOS tristate logic TTL driving CMOS, driving TTL.

Memory Devices: Semiconductor memory technologies. ROM architecture timing and types of ROM. EPROM, EEPROM, ROM applications. RAM architecture, static and dynamic. RAM, DRAM structure operation and refreshing. Expanding word size and capacity. Magnetic bubble and CCD memories trouble shooting case studies. Introduction to sequential circuits, formal representation of sequential circuits.